

Y6-Y7 Transition Work

This booklet contains a number of different Maths activities for you to have a go at.

Working through them will help make sure that you are prepared to join our Maths department in September.

We look forward to seeing you!

Activities in this Booklet Activity 1 – Different Types of Numbers

Practise your number skills and ensure you can recognise some key types of number.

Activity 2 – Times Table Challenge

Practise your times tables ready for a challenge when you start at Higham Lane School in September

Activity 3 – Calculator Crossnumber 1

When you start Maths in Year 7 you will need a scientific calculator. Practise using yours with this crossnumber.

<u>Activity 4 – Calculator Crossnumber 2</u>

Practise using your calculator a bit more with these harder questions.

Activity 5 – Knowledge Organiser

Learn these key facts ready to use them in September.

<u>Higham Lane School Maths Department - Different Types of Numbers</u>

Which different types of numbers do you know?

- List the first 15 square numbers.
- List the first 5 **cube** numbers.
- List the first 5 **triangle** numbers.
- List the first 10 **prime** numbers.

Questions

1) I am thinking of a number. It is a square number and a cube number.

What is my number?

2) I am thinking of a number. It is 3 greater than a square number, 1 greater than a cube number and 1 less than a prime number.

What is my number?

3) Can you think of a **square number** between 700 and 750?

Gold Challenge

- 1) A "perfect" number is where the sum of its factors (not including the number itself) add up to make the number.
 - e.g. The factors of 6 are 1, 2, 3 and 6. 1+2+3=6. 6 is a perfect number.

Can you find any perfect numbers?

2) I am thinking of a number. It is 35 greater than a cube number. It is 29 less than a square number. The sum of its digits is 16. It is a prime number.

What is my number?

3) To find out if a number is happy or not, you should square the digits and add them up, and then repeat if necessary. If you get 1 you have found a happy number. e.g. Consider 19: $1^2 + 9^2 = 82$, $8^2 + 2^2 = 68$. $6^2 + 8^2 = 100$, $1^2 + 0^2 + 0^2 = 1$,

19 is a happy number!

How many happy numbers can you find?

Make a poster about happy numbers.

<u>Times Tables Challenge</u>

Use the grids below to practise your times tables ready for the times tables challenge that we will be running when you are here in the Autumn Term.

X	1	2	3	4	5	6	7	8	9	10	11	12
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												

Χ	5	4	12	1	11	3	6	10	2	9	7	8
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												

X	1	2	3	4	5	6	7	8	9	10	11	12
4												
11												
3												
1												
9												
6												
2												
8												
7												
10												
5												
12												

X	5	4	12	1	11	3	6	10	2	9	7	8
4												
11												
3												
1												
9												
6												
2												
8												
7												
10												
5												
12												

Use your calculator to answer these questions:

Across

1
$$26 \times 34 - 19 = \dots$$

4
$$(3 \times 4)^2 = \dots$$

11
$$\frac{11 \times 12 \times 13}{1 \times 2 \times 3}$$
 =

13
$$\frac{274+58}{4} = \dots$$

16
$$\sqrt{207936} = \dots$$

18
$$706 \times \frac{1}{2} = \dots$$

22
$$1\frac{9}{10} + 2\frac{4}{5} = \dots$$

Down

5
$$26 \div \frac{1}{19} = \dots$$

11
$$\sqrt{6\frac{1}{4}}$$
=

12
$$3\frac{1}{2} + 2\frac{7}{10} = \dots$$

16
$$11^2 \times 4 = \dots$$

17
$$\frac{618+616}{618-616}$$
 =

21
$$\frac{5}{8} \times 16 = \dots$$

Now write your answers on the grid below.

If an answer doesn't fit then you've made a mistake... Oops! Can you correct it?

1		2		3		4		5
		6						
7	8					9	10	
	•		11		12		•	
13					•		14	
			15					
16		17				18		19
		20		21				
22	•					23	•	

Use your calculator to answer these questions:

Down

5
$$5 \times 5 + 5 + 5 \times 5 = \dots$$

15
$$9 + (8 \times 7) + (6 \times 5) = \dots$$

Across

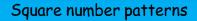
3
$$9 \times (8 + 7) \times (6 + 5) = \dots$$

7
$$(1000 \div 100) + (10 \div 1) = \dots$$

10
$$(1 \times 2) + 3 + (4 \times 5) = \dots$$

11
$$(1+2) \times 3 \times (4+5) = \dots$$

14
$$(9 \times 8) + 7 + (6 \times 5) = \dots$$


17
$$(1000 + 100) \div (10 + 1) = \dots$$

Now write your answers on the grid below.

If an answer doesn't fit then you've made a mistake... Oops! Can you correct it?

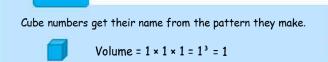
1		2		3	4		5
6							
		7				8	
	9				10		
			11	12			13
	14	15					
				16			
17							
			18				
			10				

Task 1: Learn these types of number

Square numbers get their name from the pattern they make.

Area =
$$1 \times 1 = 1^2 = 1$$

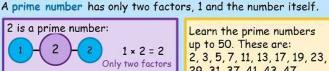
Area =
$$2 \times 2 = 2^2 = 4$$



Area =
$$3 \times 3 = 3^2 = 9$$

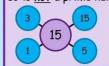
Area =
$$4 \times 4 = 4^2 = 16$$

See if you can continue the pattern!


Volume =
$$2 \times 2 \times 2 = 2^3 = 8$$

Volume = $3 \times 3 \times 3 = 3^3 = 27$

See if you can continue the pattern!


What is a prime number?

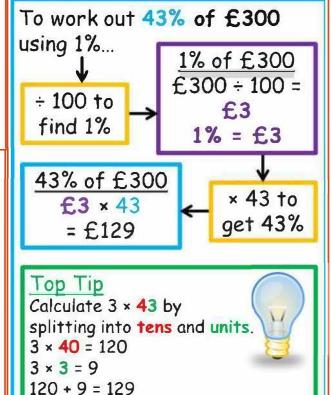
11 is a prime number:

15 is **not** a prime number:

 $1 \times 15 = 15$ $3 \times 5 = 15$ Four factors! 29, 31, 37, 41, 43, 47.

Top Tip 2 is the only even prime number. Many of the weird" odd numbers (11, 13, 17) are prime.

Watch out! 1 is not a prime number! It only has one factor: the number $1(1 \times 1 = 1)$

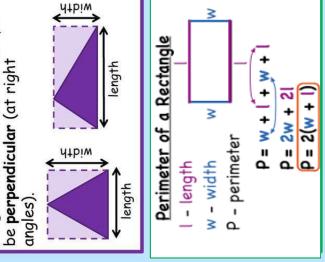

Task 2: Remember these tips for working with fractions, decimals and percentages

To write a fraction as a percentage, we can find an equivalent fraction with a denominator of 100.

For example,

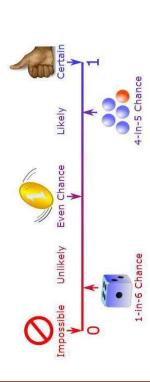
$$\frac{17}{20} = \frac{85}{100}$$
 and $\frac{85}{100} = 85\%$

Percentage	Fraction	How to find it
50%	$\frac{50}{100} = \frac{1}{2}$	Divide by 2
25%	$\frac{25}{100} = \frac{1}{4}$	Divide by 4
75%	$\frac{75}{100} = \frac{3}{4}$	Find 25%, then multiply by 3
10%	$\frac{10}{100} = \frac{1}{10}$	Divide by 10
20%	$\frac{20}{100} = \frac{1}{5}$	Divide by 5, or double 10%
5%	$\frac{5}{100} = \frac{1}{20}$	Divide by 20, or half 10%
1%	1 100	Divide by 100



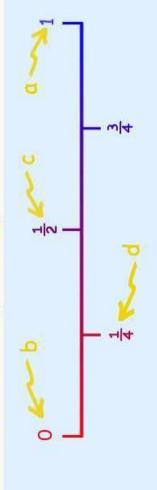
Fraction	Decimal	Percentage
$\frac{1}{2}$	0.5	50%
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%
$\frac{1}{10}$	0.1	10%
$\frac{1}{5}$	0.2	20%
$\frac{1}{20}$	0.05	5%
$\frac{1}{25}$	0.04	4%
$\frac{1}{100}$	0.01	1%

To work out the area of a Equilateral triangle Task 3: Lines of symmetry recap -3 lines of symmetry Parallelogram – no line of symmetry Rectangle – 2 symmetry lines of Square - 4 lines of symmetry triangle – 1 line of symmetry Isosceles


Task 4: Remember these formulae for area and perimeter

Length and width should always A triangle is half of a rectangle, rectangle, multiply length by Area = ½ length × width Area = length × width $A = \frac{1}{2} |w| \text{ or } \frac{|w|}{2}$ A = Iw length

Task 5: Remember these important facts about the probability scale


Probability is the chance that something will happen. It can be shown on a line:

decimals to show the probability of something As well as words, we can use fractions and happening. These are all between 0 and 1

- Impossible is 0
 - Certain is 1

Example: here we show the probability that:

- a) The sun will rise tomorrow
- b) I will not have to learn mathematics at school
- c) If I flip a coin it will land heads up
- d) Choosing a red ball from a bag with 1 red ball and 3 green balls